Corollary to Green's Theorem (Ch 16.4, Pg 1099)

(This is used on number 16.4.21 in the homework.)
First, recall that Green's Theorem gave us (where D is enclosed by C),

$$
\oint_{C} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

with appropriate assumptions on the curve C and on P and Q.
Since $\operatorname{Area}(D)=\iint_{D} 1 d A$, we can get the following from going backwards with Green's Theorem,
Corollary. If P and Q satisfy $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=1$, then we can recover the area of the domain D by

$$
\operatorname{Area}(D)=\iint_{D} 1 d A=\oint_{C} P d x+Q d y
$$

Notably, some common ways to make $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=1$ are

$$
\left\{\begin{array}{ll}
1 . & Q(x, y)=x,
\end{array} \quad P(x, y)=0 . \quad \text { 2. } \quad Q(x, y)=0, \quad P(x, y)=-y . \quad\right. \text { (take heed of the minus sign!) }
$$

and these give the expressions for the area, (take heed of minus signs and the $\frac{1}{2}$ factor from 3.)

$$
\operatorname{Area}(D)=\oint P d x+Q d y= \begin{cases}\oint_{C} x d y & \text { from } 1 . \\ \oint_{C}-y d x & \text { from } 2 . \\ \frac{1}{2} \oint_{C}-y d x+x d y & \text { from } 3 .\end{cases}
$$

(All three ways are equivalent and will get the Area correctly).
Sometimes it's more convenient to compute this line integral over C instead of the double integral over D. For example, see Example 3 on Pg 1099. Hopefully Prof. Banerjee got to it.

If we were to do Example 3 as a double integral, we would have to do a change of variables to make the ellipse into a circle (as a quick question, what would the new variables u, v be?), and then integrate. Here, with Green's Theorem, we can just do a line integral.

On the homework problem, it is using form (3) above for making $Q_{x}-P_{y}=1$.

